Package: lrgs 0.5.4

lrgs: Linear Regression by Gibbs Sampling

Implements a Gibbs sampler to do linear regression with multiple covariates, multiple responses, Gaussian measurement errors on covariates and responses, Gaussian intrinsic scatter, and a covariate prior distribution which is given by either a Gaussian mixture of specified size or a Dirichlet process with a Gaussian base distribution. Described further in Mantz (2016) <doi:10.1093/mnras/stv3008>.

Authors:Adam Mantz

lrgs_0.5.4.tar.gz
lrgs_0.5.4.zip(r-4.5)lrgs_0.5.4.zip(r-4.4)lrgs_0.5.4.zip(r-4.3)
lrgs_0.5.4.tgz(r-4.5-any)lrgs_0.5.4.tgz(r-4.4-any)lrgs_0.5.4.tgz(r-4.3-any)
lrgs_0.5.4.tar.gz(r-4.5-noble)lrgs_0.5.4.tar.gz(r-4.4-noble)
lrgs_0.5.4.tgz(r-4.4-emscripten)lrgs_0.5.4.tgz(r-4.3-emscripten)
lrgs.pdf |lrgs.html
lrgs/json (API)

# Install 'lrgs' in R:
install.packages('lrgs', repos = c('https://abmantz.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/abmantz/lrgs/issues

On CRAN:

Conda:

1.00 score 3 scripts 227 downloads 2 exports 1 dependencies

Last updated 5 years agofrom:dc832c3660. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 10 2025
R-4.5-winOKMar 10 2025
R-4.5-macOKMar 10 2025
R-4.5-linuxOKMar 10 2025
R-4.4-winOKMar 10 2025
R-4.4-macOKMar 10 2025
R-4.4-linuxOKMar 10 2025
R-4.3-winOKMar 10 2025
R-4.3-macOKMar 10 2025

Exports:Gibbs.post2dataframeGibbs.regression

Dependencies:mvtnorm