
Package: rgw (via r-universe)
September 18, 2024

Type Package

Title Goodman-Weare Affine-Invariant Sampling

Version 0.3.0

Date 2020-08-10

Author Adam Mantz

Maintainer Adam Mantz <amantz@slac.stanford.edu>

Description Implementation of the affine-invariant method of Goodman &
Weare (2010) <DOI:10.2140/camcos.2010.5.65>, a method of
producing Monte-Carlo samples from a target distribution.

License MIT + file LICENSE

LazyLoad yes

Imports parallel

URL https://github.com/abmantz/rgw

Repository https://abmantz.r-universe.dev

RemoteUrl https://github.com/abmantz/rgw

RemoteRef HEAD

RemoteSha 7cb69aa12e201ae28fd3b940899a67710ea1e697

Contents

rgw-package . 2
GoodmanWeare . 2
GoodmanWeare.rem . 4

Index 6

1

https://doi.org/10.2140/camcos.2010.5.65
https://github.com/abmantz/rgw

2 GoodmanWeare

rgw-package Goodman-Weare Affine-Invariant Sampling

Description

This package implements the affine-invariant method of Goodman & Weare (2010) <DOI:10.2140/camcos.2010.5.65>,
a method of producing Monte-Carlo samples from a target distribution. The implementation is
based on the description of the ‘emcee’ python package (implementing the same method) written
by Forman-Mackey et al. (2012) <DOI:10.1086/670067>. See ‘References’ in the documentation
of the GoodmanWeare function for full citation details.

Details

Package: rgw
Type: Package
Version: 0.3.0
Date: 2017-08-11
License: MIT
LazyLoad: yes

Author(s)

Adam Mantz <amantz@slac.stanford.edu>

GoodmanWeare Goodman-Weare Affine-Invariant Sampling

Description

Produces a Monte-Carlo Markov ensemble using the affine-invariant method of Goodman & Weare.

Usage

GoodmanWeare(ensemble, lnpost, Nsteps, current.lnP=NULL,
mc.cores=getOption("mc.cores", 1L), ...)

GoodmanWeare 3

Arguments

ensemble an Nparam*Nwalkers array holding the initial state of the sampler. Nparam
is the dimensionality of the parameter space and Nwalkers is the number of
positions in the parameter space comprising the ensemble. Nwalkers must be
even, and in practice should be *at minimum* twice Nparam.

lnpost function taking a vector of parameter values as input, and returning the log-
posterior density.

Nsteps number of iterations to run the sampler.

current.lnP vector holding the log-posterior value corresponding to the initial position of
each walker. If not provided, this will be calculated internally.

mc.cores number of cores to use for parallelism.

... additional arguments to pass to lnpost.

Value

A list containing $ensemble: an array of the same dimensionality as ensemble, containing the
position of the walkers after Nsteps iterations of the sampler; and $current.lnP: the log-posterior
density for each walker.

Note

By default, the code will attempt to run in parallel (see the ‘parallel’ package). To prevent this, pass
mc.cores=1.

Author(s)

Adam Mantz

References

Goodman, J. & Weare, J. (2010, Comm. App. Math. Comp. Sci., 5:6) <DOI:10.2140/camcos.2010.5.65>.
This implementation is based on the description given by Foreman-Mackey et al. (2012, arXiv:1202.3665)
<DOI:10.1086/670067>.

Examples

In this example, we'll sample from a simple 2D Gaussian

Define the log-posterior function
lnP = function(x) sum(dnorm(x, c(0,1), c(pi, exp(0.5)), log=TRUE))

Initialize an ensemble of 100 walkers
nwalk = 100
ensemble = array(dim=c(2, nwalk))
ensemble[1,] = rnorm(nwalk, 0, 0.1)
ensemble[2,] = rnorm(nwalk, 1, 0.1)

Run for a bit
ens2 = GoodmanWeare(ensemble, lnP, 100, mc.cores=1)

4 GoodmanWeare.rem

Plot the resulting ensemble
plot(t(ens2$ensemble))
Compare to a direct draw from the posterior distribution
points(rnorm(nwalk, 0, pi), rnorm(nwalk, 1, exp(0.5)), col=2, pch=3)

GoodmanWeare.rem Goodman-Weare Affine-Invariant Sampling

Description

Produces a Monte-Carlo Markov ensemble using the affine-invariant method of Goodman & Weare,
saving progress periodically.

Usage

GoodmanWeare.rem(post, lnpost, thin=1, mention.every=NA,
save.every=NA, save.file=NA, show.every=NA,
show.params=1:dim(post)[1], show.walkers=min(dim(post)[2],8),
show.pch1=1, show.pch2='.', show.pch.switch=500,
return.lnpost=FALSE, ...)

Arguments

post an Nparam*Nwalkers*Nsteps array. post[„1] should hold the initial state of the
sampler (see help for GoodmanWeare). Checkpoints and the return value will
have the same shape, with subsequent layers post[„i] holding the ensemble state
at later iterations.

lnpost function taking a vector of parameter values as input, and returning the log-
posterior density.

thin thinning factor for saving the results.

mention.every print a message to the console every time this many iterations are completed.

save.every save the accumulated Markov ensemble to disk every time this many iterations
are completed, in a variable called ‘post‘. See ‘Value‘, below.

save.file filename for saving progress.

show.every plot parameter traces so far to the active graphics device periodically.

show.params (sub)set of parameter traces to plot (default is to show all).

show.walkers which walkers to plot traces of (default is first 8).

show.pch1 plot symbol to use for short chains.

show.pch2 plot symbol to use for long chains.
show.pch.switch

chain length that distinguishes "short" and "long" chains for plotting purposes.

return.lnpost whether to return log-posterior values for each sample; see Value.

... additional named arguments to pass to GoodmanWeare or lnpost.

GoodmanWeare.rem 5

Value

If return.lnpost==FALSE, an array of the same dimensionality as post, storing the position of the
walkers in post[„i] every thin iterations. Otherwise, a list containing that array as $post, as well as
an Nwalkers*Nsteps array storing the corresponding log-posterior values as $lnP. The log-posterior
values $lnP[,1], corresponding with the starting ensemble positions $post[„1], will always be NA.

Note

By default, the code will attempt to run in parallel (see the ‘parallel’ package). To prevent this, pass
mc.cores=1.

If traces are being plotted (show.every not NA), par(mfrow=c(length(show.params), 1)) is called on
the current graphics device. If the device is not large enough to show all of the traces, this will cause
a crash.

Author(s)

Adam Mantz

References

See also help for rgw::GoodmanWeare.

Examples

In this example, we'll sample from a simple 2D Gaussian.
(This is the same example as used in GoodmanWeare.)

Define the log-posterior function
lnP = function(x) sum(dnorm(x, c(0,1), c(pi, exp(0.5)), log=TRUE))

Initialize an ensemble of 100 walkers. We'll take 100 steps, saving the
ensemble after each.
nwalk = 100
post = array(NA, dim=c(2, nwalk, 101))
post[1,,1] = rnorm(nwalk, 0, 0.1)
post[2,,1] = rnorm(nwalk, 1, 0.1)

Run
post = GoodmanWeare.rem(post, lnP, mc.cores=1)

Plot the final ensemble
plot(post[1,,101], post[2,,101])
Look at the trace of each parameter for one of the walkers.
plot(post[1,1,])
plot(post[2,1,])

Index

∗ htest
GoodmanWeare, 2
GoodmanWeare.rem, 4

∗ package
rgw-package, 2

GoodmanWeare, 2
GoodmanWeare.rem, 4

rgw (rgw-package), 2
rgw-package, 2

6

	rgw-package
	GoodmanWeare
	GoodmanWeare.rem
	Index

